
InterSymp-2008, Focus Symposium on Intelligent Software Tools and Services, Germany, 25 July 2008 KYM-IS08

 1

Perspective Models: A Mechanism for Achieving Interoperability

Among Expressive, Personalized Domain Views

Kym J. Pohl
CDM Technologies Inc.

2975 McMillan Ave.
San Luis Obispo, CA. 93401

805-541-3750 x233
kpohl@cdmtech.com

http://www.cdmtech.com

Abstract—Accurate and expressive representation of the
subject matter over which a context-oriented, decision-
support system operates is fundamental to the effectiveness
and longevity of the resulting solution. Often taking the
form of an ontology, such extensive representational
models, by their very nature, are rich in relationships and
both coarse and fine-grained objects. It is, however, these
qualities enabling rich expression that can significantly
increase both the complexity of developing against these
models as well as the potential for incurring undesirable
performance issues. Further, due to the typically detail-
oriented usage inherent in the software-based users (i.e.,
reasoning agents, etc.) of these models, it is important to
recognize that a singular view of the world so to speak is not
necessarily appropriate across the entire Ontology user base.
In fact, in such highly expressive environments, it is critical
to not only recognizing these distinctions in user
perspective, but to, in fact, promote and exploit them. It is
by acknowledging and consequentially supporting this
perspective-based individuality among Ontology users that
true representational accuracy and utility is achieved.

Traditionally, software-based users comprising decision-
support systems have operated over a singular, common
representation. However, in the Perspective Model-enriched
environment presented in this paper1, Ontology users are
empowered with the ability to effectively perceive the world
in accordance with individualized, native views. These
views are then seamlessly inter-linked with one another to
form a multi-Perspective Model of the target domain
capable of supporting rich interoperability. Exclusively
operating over personalized Perspective Models, users are
not only shielded from the broad-scoped complexities
inherent in the more omniscient concerns of the Ontology’s
entire scope but are also able to both view and interact with
it in terms of more native representation.

To be effective, the concept of Perspective Models must be
partnered with a supportive model development process. In
addition to an explanation of the concept of Perspective
Models, this paper also presents a purpose-built

development process that supports effective creation of the
potentially numerous sets of models inherent in this type of
expressive paradigm. The process offered in this paper
effectively parcels the development of individual
Perspective Models with the individuals possessing the
necessary domain and use-case expertise. In this manner,
the development process strives to significantly increase the
involvement of the entire set of team members in the
modeling activity, both capitalizing on user domain
expertise in addition to increasing critical user
understanding as well as acceptance of the representation
over which their components will operate.

TABLE OF CONTENTS

1. REPRESENTING PERSPECTIVE1
2. AN EFFECTIVE DEVELOPMENT PROCESS......................5
3. CONCLUSION ..6
REFERENCES ..6

1. REPRESENTING PERSPECTIVE

Fundamental to context-oriented reasoning is the highly
expressive representation over which intricate analysis is
performed [8] [12] [13]. Often in the form of an Ontology,
such elaborate descriptions form the foundation
underpinning the effectiveness of context-oriented,
decision-support systems. An Ontology in the scope of this
paper1,2 is defined as a highly expressive, typically
relationship-rich model of the potentially extensive subject
matter over which software components, hereunto referred
to as users, reason and otherwise operate.

1
 Copyright CDM Technologies Inc., 2008

InterSymp-2008, Focus Symposium on Intelligent Software Tools and Services, Germany, 25 July 2008 KYM-IS08

 2

The Significance of Perspective

Perspective is applied each time we as human beings
perceive something. Although certainly at times aligning
fairly closely across multiple observers, such perspectives
are inherently unique to the individual. Housed within these
individualized perspectives is valuable information
describing how a particular topic is most suitably
represented from a certain point of view. In addition, such
perspectives also convey how a particular subject relates to
other subject matter seen as relevant by the particular
individual. Even when a concept or thing has a common
basis among observers, individual perception is typically
still biased toward personalized experiences and overall
knoweldge. Although at times a significant complication for
meaningful interaction, such perspective is extremely
significant to accurate representation as it is rich in
descriptive context. For example, consider the following
illustration involving the laptop on which this paper was
written. In the case of a software system assisting within the
initial manufacturing process, the laptop might be most
effectively described in terms of its product-oriented nature.
In this sense, the most suitable representation of the laptop
would revolve around characteristics relevant to assembly,
packaging, and other such manufacturing-oriented concerns.
Further, relationships to customer orders and delivery
schedules would also be important to represent. In contrast,
however, characteristics explicitly describing the laptop’s
utility in authoring publications or developing software are
fairly peripheral, if not completely irrelevant to the target
manufacturing domain. However, such perspective may be
quite relevant to, for example, the interests of marketing or
perhaps even customer-support. Of course both perspectives
are quite valid with respect to their individual areas of
operation. However, both views would inevitably
encompass some of the same subject matter (i.e., laptops)
yet describe them in distinctively different manners. The
problem arises when users of distinctly different
representations of the same subject matter attempt to
interact. This situation can produce a significant dilemma.
Simply stated, the valuable context that is expressed within
individualized perspectives can also significantly limit the
ability for users to interoperate in a meaningful fashion (i.e.,
in terms of rich context).

However, despite the complications brought on by
attempting to capture and exploit distinctive perspective,
support for such personalized expression can significantly
increase the quality of analysis performed by intelligent
software agents operating within a decision-support
environment. Perspective-enriched models can successfully
capture not only the sometimes subtle distinctions among
Ontology users, but by doing so can promote a more
expressive description of each user’s perception of their
world. Unfortunately, due to the complexity inherent in
identifying and supporting such subtleties and nuances,
representation approaching this level of expression has
traditionally been buried as implied assumptions within

convoluted business logic or simply omitted entirely.
However, when appropriately represented and housed
within the context tier of a collaborative environment, such
expressiveness can not only be effectively exploited, but is
also much more readily accessible to users.

Perspective Models

However, even with perspective sufficiently represented
within the context tier, the ability for users of such
perspective to interact in terms of their individualized views
poses a substantially complex interoperability problem. The
solution to this interoperability dilemma comprises three
elements. The first focuses on the development of a
singular, all-encompassing ontology referred to as a
Universal Model. As the name implies, Universal Models
are an attempt to develop an all-purpose, amalgamation
satisfying all possible use-cases and perspectives. In this
paradigm, each user would utilize the Universal Model as its
primary language for interacting with other users. As a
distinct strength of this approach, each user would
essentially dialogue with one another in terms of a single
representation promoting interoperability in a clear and
concise manner void of any context-diminishing translation.
Each user would essentially share the same view of the
world. However, considering the complexity resulting from
collapsing what could possibly be numerous perspective-
oriented characteristics into a single description, the
resulting model would be severely bloated and would most
likely fail to adequately represent any one particular
perspective, resulting in a model confusing to utilize.

The second, somewhat related attempt at solving this
dilemma addresses the inevitable complexity of the
Universal Model approach described above and offers a
more delineated organization. In this approach, each
particular subject matter is modeled in terms of its
fundamental, intrinsic nature. The various perspectives
applied to each particular subject are explicitly represented
as individual model fragments. These perspective sub
models are connected to the subject models they enhance
using the role analysis pattern [3]. Such a connection can be
conceptualized as something playing a variety of roles with
each role representing a particular view on that subject. In
this fashion, individual perspectives can be easily managed
and clearly discernable from one another. In addition, this
approach offers a degree, although limited, of encapsulation
and isolation from irrelevant perspectives as users can
isolate their interaction with a subject matter to those
perspectives that are meaningful to them. Further, additional
perspectives can be integrated in a manageable fashion
through the incorporation of new roles-based model
fragments. As a result, each subject is connected to model
fragments describing the various contexts in which it can be
viewed. For example, interaction with the aforementioned
laptop subject from a manufacturing-oriented perspective
may be in terms of a related ManufacturedProductRole
model fragment. However, the problem with this approach

InterSymp-2008, Focus Symposium on Intelligent Software Tools and Services, Germany, 25 July 2008 KYM-IS08

 3

is that even though perspectives relating to the same subject
matter are somewhat partitioned from one another, they
remain integrated into a single model with no explicit
management and depending heavily on diligent usage. As
such, additional access control may need to be employed to
truly isolate users to relevant perspectives. In addition, there
is still the dilemma of whether or not a slight difference in
two perspectives is worthy to warrant creation of an entirely
new Perspective Model fragment. In practice, one would be
tempted to collapse subtle differences in perspective into a
single, overloaded model fragment, thus compromising
accurate expression.

The third, more promising solution to supporting
individualized yet interoperating perspectives introduces the
notion of a Perspective Model. Based on a semi-stateful
façade design pattern [5], Perspective Models allow
context-rich subject matter to be viewed by inter-operating
users in terms of individualized, native perspective.
Perspective models may directly contain their content,
derive it from some type of shared source (e.g., an
Integration Model), or comprise a combination thereof.
While state simply for local consumption is represented and
maintained within the Perspective Model itself, derivation is
used for material that is shared across users (i.e., the basis
for collaboration). In the case of derived content, the
function of the Perspective Model may, for example, be to
apply more native terminology, structure, or other
characteristics that more appropriately represent the manner
in which the particular user wishes to see the world. In some
cases such mappings, either uni-directional or bi-directional,
may be fairly straightforward and easily describable through
standard expression grammar. However, in other cases these
mappings may be rather complex to the point of requiring
customized behavior. In either case, such mappings can be
effectively described in terms of a formalized language such
as XSLT [1] [9] or CLIPS-based rule sets [6] [11].

Integration Model

As mentioned earlier, derivation is essentially the means for
linking together multiple perspectives applied to the same
subject matter. While there are a number of approaches to
supporting such integration, it is critical that the
individuality and bias exhibited by each Perspective Model
is preserved in its native form. These models are essentially
a user’s most familiar and descriptive language with which
to interact with the rest of the world (i.e., other users).

The approach presented in this paper to interconnecting
disparate perspectives of the same subject matter employs
the notion of an Integration Model in conjunction with the
façade design pattern [5]. Although not a necessity,
employing an Integration Model as a central hub from
which interacting models are mapped in and out of avoids
the many-to-many mapping paradigm inherent with a more

direct perspective-to-perspective connection. With this
approach, a central, role-based representation of clearly
delineated perspectives, not unlike the second alternative to
integrating multiple perspectives described earlier, is
developed as a well-structured and delineated combination
of individualized perspectives related to the intrinsic subject
matter they enhance. For example, the main subject of our
earlier example might take the form of a laptop entity that
can play the role of a manufactured product, as well as
perhaps the role of a software platform. While the laptop
entity would be focused on describing the subject’s intrinsic
nature, characteristics specific to each of these two
perspectives would be housed within each related role.

As a further, diagrammatic description of this connection,
Figure 1 describes a logistically-oriented Perspective Model
linked to an Integration Model that presents a fairly neutral
description of a conveyance. As an aside, note that
conceptually such neutrality is not necessarily a prerequisite
in that if the Integration Model were more heavily biased
toward a particular perspective, it would simply imply that
the Perspective Models might need to be more extensive and
incorporate additional constraints. However, in the interest
of clarity, this example employs a somewhat neutral
Integration Model.

Central to the logistics perspective presented in Figure 1 is
the notion of a transport. Although the logistics perspective
may have knowledge of the entire set of conveyance types
(i.e., vessels, vehicles, and aircraft) represented in the
Integration Model, in respect to the logistics view, only
vessels and rotary aircraft are considered candidate
transports. In this situation, it would be valuable to represent
this constraint in the Perspective Model employed by the
logistics system while still basing such a biased view on the
much more neutral representation of the conveyance offered
by the Integration Model. As Figure 1 illustrates,
representing such refinement can be accomplished by
explicitly introducing a constrained notion of a transport in
the logistics-oriented Perspective Model. According to the
particular perspective, an abstract Transport is defined as
taking two specific forms (VesselTransport and
HelicopterTransport). At this point, it is immediately
apparent that a vehicle is not a candidate to be a transport,
from that perspective. In the context of this example,
transports can only be VesselTransports or
HelicopterTransports. The task now becomes linking this
perspective together with the core Integration Model.
Relating these two transport types to their conveyance
derivation can be achieved in either an explicit or implicit
manner. For illustration purposes, the definition of
VesselTransport adopts the first method while
HelicopterTransport employs the second. The first method
defines an explicit, and exposed relationship between the
VesselTransport and the core description of a vessel
outlined in the conveyance section of the Integration Model.

InterSymp-2008, Focus Symposium on Intelligent Software Tools and Services, Germany, 25 July 2008 KYM-IS08

 4

- ETA :

SupplyMission

- range :

Transport

- maxHoverHeight :

HelicopterTransport

- maxSeaState :

VesselTransport

- weight :
- geometry :
- position :

PhysicalEntity

- maxRange :
- maxFuelCapacity :

Conveyance

- maxHoverHeight :

RotaryAircraft

- deckInfo :

Vessel

- flightTime :

Aircraft

GroundVehicle

*
usesTransports

- minLandingDistance :

WingerAircraft

Equipment

delivers

<< derivation >>
range = maxRange

<< derivation >>
maxHoverHeight

explicitelyLinksTo

Integration ModelPerspective Model (logistics)

Figure 1 – UML [4] Diagram Illustrating A Logistics Perspective Model Deriving From A Relatively Unbiased Central
Integration Model

Utilizing this approach, obtaining the core information
relative to the corresponding Vessel from a VesselTransport
requires both knowledge of their relationship in addition to a
further level of indirection. For reasons of performance and
representational precision, both of these requirements may
not be desirable.

The second method, illustrated in Figure 1 using
HelicopterTransport, overcomes both shortcomings
inherent in the first approach. In this case,
HelicopterTransport is represented in terms of a façade, or
filter of sorts, which transparently connects this biased view
to the core RotaryAircraft description housed within the
Integration Model. That is, each attribute of RotaryAircraft
relevant to the notion of a HelicopterTransport is explicitly
declared within the façade. For example, since the
maximum range of travel is relevant to the definition of a
HelicopterTransport the maxRange attribute of
RotaryAircraft (inherited from Conveyance) is subsequently
exposed in the HelicopterTransport façade. By virtue of
being declared as a derived property, any access to such an
attribute would be transparently mapped to the
corresponding attribute(s) housed within the Integration

Model. In the case of the range attribute of
HelicopterTransport, access is transparently directed to the
inherited maxRange attribute of RotaryAircraft. Notice also
the use of alternative terminology over that used in the
Integration Model (i.e., range vs. maxRange). It should also
be noted that the derived nature of a façade attribute is not
limited to mapping to a single attribute. Rather, the value of
a façade attribute may also be derived through specific
behavior, perhaps a calculation or algorithm based on the
values of multiple attributes residing across several
Integration Model objects. In either case, the fact that the
value of the façade attribute is derived, and not originating
locally, is completely transparent to users of the
HelicopterTransport Perspective Model object.

Yet another perspective-oriented enhancement to the core
Integration Model illustrated in Figure 1 is the notion of a
SupplyMission. Being a fundamental notion of a logistics
perspective, a supply mission essentially relates equipment
in the form of supply items to the transports by which they
will be delivered. Once again, the definition of a logistics-
specific notion (i.e., supply item) is derived from a notion
defined in the Integration Model (i.e., equipment). In this

InterSymp-2008, Focus Symposium on Intelligent Software Tools and Services, Germany, 25 July 2008 KYM-IS08

 5

case, an explicit relationship is declared linking
SupplyMission to zero or more Equipment items. From the
perspective of the logistics system equipment scheduled for

delivery is perceived as items to be supplied, the term
supplyItems is a more appropriate nomenclature. Such

- ETA :

SupplyMission

- range :

Transport

- maxHoverHeight :

HelicopterTransport

- maxSeaState :

VesselTransport

- weight :
- geometry :
- position :

PhysicalEntity

- maxRange :
- maxFuelCapacity :

Conveyance

- maxHoverHeight :

RotaryAircraft

- deckInfo :

Vessel

- flightTime :

Aircraft

GroundVehicle

*
usesTransports

- minLandingDistance :

WingerAircraft

Equipment

delivers

<< derivation >>

range = maxRange

<< derivation >>

maxHoverHeight

explicitelyLinksTo

Integration ModelPerspective Model (logistics)

TacticalMission

- readiness :

Organization

- tacticalSystems :
- maxRange :

Asset

*
hasMissions

*
hasAssets<< derivation >>

maxRange

*

hasEquipment

Perspective Model

(tactics)

Figure 2 – UML [4] Diagram Illustrating Two Disparate Perspectives Connected Via A Central Integration Model

enhancement to the innate descriptions provided by the
Integration Model demonstrates the ability of a Perspective
Model to essentially overlay new notions (i.e., supply
missions) over existing intrinsically-described subject
matter (i.e., equipment and conveyances). To further
illustrate how multiple, potentially diverse perspectives can
be effectively integrated to support meaningful
interoperability, Figure 2 elaborates on the example by
introducing an additional perspective on the core subject
matter. The additional perspective is concerned with a more
tactical view of the domain. Collaboration between these
two perspectives is enabled by the common Integration
Model from which many of their notions derive. A
conveyance is still a conveyance whether viewed in the
context of logistics operations or tactical command and
control. Although both users may discuss a conveyance
from partially disparate perspectives, both can effectively
collaborate about a particular conveyance in terms of their
own native, biased perspectives.

2. AN EFFECTIVE DEVELOPMENT PROCESS

Perspective models can be a powerful means of capturing
and exploiting the expressive nature inherent in
individuality. However, to arrive at an effective approach,

such a method must be accompanied by a complimentary
development process. Traditional approaches to domain
model development have typically involved a dedicated
knowledge engineer, or group of such individuals, whose
task it is to produce a well structured representation of the
target domain(s). Following creation of such a model,
component developers design and implement functionality
in terms of, or at least in a form that is compatible with, this
representation. The problem inherent in this approach is
essentially twofold. First, while model development is
usually driven by a focused study of the domain this study
typically does not include the specific use cases of its
intended users. After all, the primary purpose of the
representation sustaining a context-oriented, decision-
support environment is to effectively support the data,
information, and knowledge needs of its users. To ensure
effective support of these activities, such implicit use-cases
should be one—if not the most significant—force that
drives model development.

The second pitfall of a conventional modeling approach also
deals with the potential disconnect between a subject matter
representation and its users. However, in this case the
problem manifests itself at a more humanistic level. Critical
to the successful application of an often fairly complex

InterSymp-2008, Focus Symposium on Intelligent Software Tools and Services, Germany, 25 July 2008 KYM-IS08

 6

representation is the degree to which project team
developers embrace, and are able to become familiar with,
the various structure and semantics comprising the model.
This is especially true in the case of reasoning-based,
decision-support systems which tend to operate over
complex, highly expressive contexts. To effectively exploit
the expressive nature of context-enriched models requires
developers to both understand such representation at a
semantic level as well as embrace the manner in which it
represents their subject matter interests. Many systems have
fallen far short of their potential, sometimes to the point of
complete failure, due to a lack of team member
understanding and buy-in to the manner in which their
domain(s) are represented.

The development process offered in this discussion
addresses this disconnect by significantly increasing the
involvement of model users with the actual model
development activity itself. There are a number of benefits
to such team member inclusion. First, as component
developers research and design their solutions (i.e., software
components), they essentially acquire a considerable amount
of expertise and knowledge regarding relevant domain(s).
Such familiarity goes beyond a fairly deep understanding of
the semantics of relevant subject matter and includes
valuable insight into the precise means by which particular
functionality might most effectively view such content. It is
the identification and subsequent capture of such
individualized expression that produces a truly accurate
representation. Since the focus is on capturing native
perspective and bias, there is no need at this stage—in fact it
would be potentially polluting—to be concerned with the
degree to which these models align with each other.
Narrowing the scope of individual Perspective Model
development not only promotes the capture of true
individuality, but is also a significantly less complex task
than developing a singular, all-encompassing model
supporting the entire set of interconnected perspectives (i.e.,
Universal Model). This less complex modeling environment
has a direct impact on the amount of expertise and
experience required for effectively developing these
personalized Perspective Models. While good modeling
practices are still quite important in this process, they can be
applied within considerably less complex environments by
individuals who may not have the modeling depth of an
experienced knowledge engineer. Further, familiarity with
model structure and subsequent semantics undoubtedly
leads to a significantly stronger bond between component
developers and the subject matter representation over which
their components operate.

Development of the Integration Model itself is a notably
more involved task than that of developing the various
Perspective Models. Development of the Integration Model
involves the analysis of each Perspective Model with an eye
for both identifying and abstracting subject matter existing
across the multitude of user perspectives. Further, this

subject matter must be modeled in a manner that maintains
overall consistency and integrity as well as promotes
expandability as additional inclusion of additional content is
needed. Considering the complexities involved in this task,
in addition to the demand for being both knowledgeable and
comfortable with applying various intricate analysis
patterns, this activity typically requires a highly
experienced, expert modeler. As such, this activity might
become the main area of focus for the expert knowledge
engineer(s) who have traditionally been responsible for the
entire modeling activity.

The final component to building the Integration Model is to
describe the derivation logic that effectively ties the various
Perspective Models with the central Integration Model.
Coupled with some type of code-generation facility capable
of managing implementation concerns, such derivation
specifications can be designed, communicated, and
maintained at the modeling level. Similar to development of
the actual Integration Model itself, development of these
mappings will likely also require the skills of an
experienced knowledge engineer.

3. CONCLUSION

To obtain truly accurate, expressive representation,
individual perspective must be specifically captured based
on the use-cases of its immediate user(s). Interoperability
within a diverse, perspective-enriched environment must
support meaningful interaction between users that preserves
this individualized perspective. Applying Perspective
Models interconnected via a unifying Integration Model
effectively supports these two objectives. Further,
employing a development process where Perspective Model
development directly involves the very users themselves
leads to a more precise and expressive representation while
significantly improving the representation’s effectiveness
through increased user familiarity and imperative model
adoption.

REFERENCES

[1] Cagle, K., M. Corning, J. Diamond, T. Duynstee, O.
Gudmundsson, M. Mason, J. Pinnock, P. Spencer, J.
Tang, A. Watt, J. Jirat, P. Tchistopolskii, and J. Tennison,
“Professional XSL”, Wrox Press Ltd,. Birmingham, UK.,
2001

[2] Daconta M., L. Obrst and K. Smith, “The Semantic Web:
A Guide to the Future of XML, Web Services, and
Knowledge Management”, Wiley, Indianapolis, IN., 2003

[3] Fowler, M., “Analysis Patterns: Reusable Object Models”,
Addison-Wesley, Reading, Massachusetts, 1997.

InterSymp-2008, Focus Symposium on Intelligent Software Tools and Services, Germany, 25 July 2008 KYM-IS08

 7

[4] Fowler, M., “UML Distilled: Applying the Standard
Object Modeling Language”, Addison-Wesley, Reading,
Massachusetts, 1997.

[5] Fowler M., D. Rice, M. Foemmel, E. Hieatt, R. Mee, and
R. Stafford, “Patterns of Enterprise Application
Architecture”, Addison-Wesley, Reading, Massachusetts,
2003

[6] Friedman-Hill, E., “JESS In Action”, Manning
Publications Co., Greenwich, CT, 2003

[7] Garshol L. and G. Moore (eds.), “The XML Topic Maps
(XTM) Syntax”, JTC1/SC34:ISO 13250, July 22, 2002,
(www.y12.doe.gov/sgml/sc34/document/0328.htm)

[8] Giarratano J. and Riley G., “Expert Systems: Principles
and Programming”, 2nd Edition, PWS Publishing
Company, Boston, MA.

[9] Hunter D., C. Cagle, D. Gibbons, N. Ozu, J. Pinnock, and
P. Spencer, “Beginning XML”, Wrox Press Ltd.,
Birmingham, UK., 2000

[10] Karsai G., “Design Tool Integration: An Exercise in
Semantic Interoperability”, Proceedings of the IEEE
Engineering of Computer Based Systems, Edinburgh,
UK, March, 2000

[11] NASA, “CLIPS 6.0 Reference Manual”, Software
Technologies Branch, Lyndon B Space Center, Houston,
Texas, 1992

[12] Pohl J., “Information-Centric Decision-Support Systems:
A Blueprint for Interoperability”, Office of Naval
Research (ONR) Workshop hosted by the CAD Research
Center in Quantico, VA, June 5-7, 2001

[13] Pohl J, A Chapman, K Pohl, J Primrose and A Wozniak,
“Decision-Support Systems: Notions, Prototypes, and In-
Use Applications”, Technical Report, CADRU-11-97,
CAD Research Center, Design Institute, College of
Architecture and Environmental Design, Cal Poly, San
Luis Obispo, CA, January, 1997

