
Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 1

Intelligent Information Management Tools

in a Service-Oriented Software Environment

Jens Pohl, Ph.D.

Executive Director, Collaborative Agent Design Research Center (CADRC)

California Polytechnic State University (Cal Poly)

San Luis Obispo, California, USA

Abstract

This paper draws attention to the increasing need for agile and adaptive software environments

that are capable of supporting rapid re-planning during the execution of time-critical operations

involving commercial end-to-end supply chain transaction sequences, as well as disaster

response and military missions. It is argued that such environments are currently best served by

information-centric software tools executing within a service-oriented paradigm. Service-

oriented architecture (SOA) design concepts and principles are described, with a focus on the

functions of the services management framework (SMF) and enterprise service bus (ESB)

components. Differentiating between data-centric and information-centric services, it is

suggested that only intelligent software services, particularly those that incorporate an internal

representation of context in the form of an ontology and agents with reasoning capabilities, are

able to effectively address the need for agile and adaptive planning, re-planning and decision-

support tools.

The paper concludes with a description of the design components of a business process

management (BPM) system operating within a SOA-based infrastructure, followed by a brief

discussion of Cloud computing promises and potential user concerns.

Keywords: adaptive, agile, APEX, cloud computing, BPEL, business process execution

language, BPM, business process management, choreographer, data-centric, enterprise service

bus, ESB, information-centric, mediator, registry, services management framework, SMF,

service-oriented architecture, SOA

Need for Adaptive Planning Tools

There is an increasing need in industry and government for planners and decision-makers to be

able to rapidly re-plan during execution. Experience has shown that the best-laid plans will likely

have to be changed during implementation. Operational environments are often impacted by

events or combinations of factors that were either not foreseen during the planning stage or were

thought to be unlikely to occur. In commerce, where just in time inventories have become an

acknowledged cost-saving measure, suppliers and shippers are particularly vulnerable to the

disruption of end-to-end supply chain sequences, such as inclement weather conditions, traffic

congestion, accidents, equipment malfunction, and human error.

Military commanders, who often deal with extremely time-critical and human life endangering

operations have learned from bitter experience that agile planning tools are essential for their

ability to rapidly adapt to changing mission conditions. It can be argued that an information

Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 2

management environment, with an agile planning capability of the type implied by the stated

objectives of the Adaptive Planning and Execution (APEX)
1
 process recently adopted by the U.S.

military forces, requires both the ability to automatically interpret data in context and the

flexibility to provide access to decision-support tools regardless of whether these are part of the

same software application or another application.

This argument is based on the definition of agility as the ability to rapidly adapt to changing

conditions, and has two implications. First, in a real world environment the operational data that

enter a particular application may not adhere exactly to the specifications on which the design of

the software was originally based. An agile software application will therefore need to have the

ability to automatically interpret the incoming data within the appropriate context and make the

necessary processing adjustments. Second, under such dynamic conditions it is likely that the

user will have a need for tools that were not foreseen during the design of the application and are

therefore not available. An agile software environment will therefore have to provide access to a

wide range of tools, at least some of which may not be an integral component of the particular

application that the operator is currently using. This suggests a system environment in which

software tools can be seamlessly accessed across normal application domain boundaries. This is

the objective of an information management environment that is based on the service-oriented

concepts and principles described in this paper.

Information-Centric vs. Data-Centric

There are several reasons why computer software must increasingly incorporate more and more

intelligent capabilities (Pohl 2005). Perhaps the most compelling of these reasons relates to the

current data-processing bottleneck. Advancements in computer technology over the past several

decades have made it possible to store vast amounts of data in electronic form. Based on past

manual information handling practices and implicit acceptance of the principle that the

interpretation of data into information and knowledge is the responsibility of the human

operators of the computer-based data storage devices, emphasis was placed on storage efficiency

rather than processing effectiveness. Typically, data file and database management

methodologies focused on the storage, retrieval and manipulation of data transactions
2
, rather

than the context within which the collected data would later become useful in planning,

monitoring, assessment, and decision-making tasks.

The term information-centric refers to the representation of information, as it is available to

software modules, not to the way it is actually stored in a digital machine. This distinction

1
 Adaptive Planning and Execution Roadmap II, AO Review (Draft), Joint Chiefs of Staff, 8 February 2007.

2
 Most large organizations, including the Military, are currently forced to dedicate a significant portion of their

operating budget, staff, project budgets, and time, on the piecemeal resolution of ad hoc problems and obstacles

that are symptoms of an overloaded data-centric environment. Examples include: data bottlenecks and

transmission delays resulting in aged data; temporary breakdown of data exchange interfaces; inability to

quickly find critical data within a large distributed network of data-processing nodes; inability to interpret and

analyze data within time constraints; and, determining the accuracy of the data that are readily available. This

places the organization in a reactive mode, and forces it to expend many of its resources on solving the

symptoms rather than the core problem. In contrast, an information-centric environment is capable of

supporting: (1) the automatic filtering of data by placing data into an information context; (2) the automated

reasoning of software agents as they monitor events and assist human planners and problem solvers in an

intelligent collaborative decision-making environment; and, (3) autonomic computing capabilities.

Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 3

between representation and storage is important, and relevant far beyond the realm of

computers. When we write a note with a pencil on a sheet of paper, the content (i.e., meaning) of

the note is unrelated to the storage device. A sheet of paper is designed to be a very efficient

storage medium that can be easily stacked in sets of hundreds, filed in folders, folded, bound into

volumes, and so on. As such, representation can exist at varying levels of abstraction. The

lowest level of representation considered is wrapped data. Wrapped data consists of low-level

data, for example a textual e-mail message that is placed inside some sort of an e-mail message

object. While it could be argued that the e-mail message is thereby objectified it is clear that the

only objectification resides in the shell that contains the data and not the e-mail content. The

message is still in a data-centric form offering a limited opportunity for interpretation by

software components.

A higher level of representation endeavors to describe aspects of a domain as collections of inter-

related, constrained objects. This level of representation is commonly referred to as an

information-centric ontology. At this level of representation context can begin to be captured and

represented in a manner supportive of software-based reasoning. This level of representation

(i.e., context) is an empowering design principle that allows software to undertake the

interpretation of operational data changes within the context provided by the internal information

model (i.e., ontology).

Even before the advent of the Internet and the widespread promulgation of SOA concepts it was

considered good software design and engineering practice to build distributed software systems

of loosely coupled modules that are able to collaborate by subscription to a shared information

model. The principles and corresponding capabilities that enable these software modules to

function as decoupled services include (Pohl 2007):

• An internal information model that provides a usable representation of the

application domain in which the service is being offered. In other words, the

context provided by the internal information model must be adequate for the

software application (i.e., service) to perform as a useful adaptive set of tools in

its area of expertise.

• The ability to reason about events within the context provided by the internal

information model. These reasoning capabilities may extend beyond the ability to

render application domain related services to the performance of self-monitoring

maintenance and related operational efficiency tasks.

• Facilities that allow the service to subscribe to other internal services and

understand the nature and capabilities of these resources based on its internal

information model
3
.

• The ability of a service to understand the notion of intent (i.e., goals and

objectives) and undertake self-activated tasks to satisfy its intent. Within the

current state-of-the-art this capability is largely limited by the degree of context

that is provided by the internal information model.

3
 This must be considered a minimum system capability. The full implementation of a web services environment

should include facilities that allow a service to discover other external services and understand the nature and

capabilities of these external services.

Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 4

Additional capabilities that are not yet able to be realized in production systems due to technical

limitations, but have been demonstrated in the laboratory environment, include: the ability of a

service to learn through the acquisition and merging of information fragments obtained from

external sources with its own internal information model (i.e., dynamically extensible

information models); extension of the internal information model to include the internal

operational domain of the software application itself and the role of the service within the

external environment; and, the ability of a service to increase its capabilities by either generating

new tools (e.g., creating new agents or cloning existing agents) or automatically searching for

external assistance.

Service-Oriented Architecture (SOA)

The notion of service-oriented is ubiquitous. Everywhere we see countless examples of tasks

being performed by a combination of services, which are able to interoperate in a manner that

results in the achievement of a desired objective. Typically, each of these services is not only

reusable but also sufficiently decoupled from the final objective to be useful for the performance

of several somewhat similar tasks that may lead to quite different results. For example, a

common knife can be used in the kitchen for preparing vegetables, or for peeling an orange, or

for physical combat, or as a makeshift screwdriver. In each case the service provided by the knife

is only one of the services that are required to complete the task. Clearly, the ability to design

and implement a complex process through the application of many specialized services in a

particular sequence has been responsible for most of mankind’s achievements in the physical

world. The key to the success of this approach is the interface, which allows each service to be

utilized in a manner that ensures that the end-product of one service becomes the starting point of

another service.

Figure 1: Principal components of a conceptual SOA implementation

Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 5

In the software domain these same concepts have gradually led to the adoption of Service-

Oriented Architecture (SOA) principles. While SOA is by no means a new concept in the

software industry it was not until Web services became available that these concepts could be

readily implemented (Erl 2005). In the broadest sense SOA is a software framework for

computational resources to provide services to customers, such as other services or users. The

Organization for the Advancement of Structured Information (OASIS)
4
 defines SOA as a “…

paradigm for organizing and utilizing distributed capabilities that may be under the control of

different ownership domains” and “…provides a uniform means to offer, discover, interact with

and use capabilities to produce desired effects with measurable preconditions and expectations”.

This definition underscores the fundamental intent that is embodied in the SOA paradigm,

namely flexibility. To be as flexible as possible a SOA environment is highly modular, platform

independent, compliant with standards, and incorporates mechanisms for identifying,

categorizing, provisioning, delivering, and monitoring services.

The principal components of a conceptual SOA implementation scheme (Figure 1) include a

Services Management Framework (SMF), various kinds of foundational services that allow the

SMF to perform its management functions, one or more portals to external clients, and the

enterprise services that facilitate the ability of the user community to perform its operational

tasks.

Services Management Framework (SMF): A Services Management Framework (SMF)

is essentially a SOA-based software infrastructure that utilizes tools to manage the

exchange of messages among enterprise services. The messages may contain requests for

services, data, the results of services performed, or any combination of these. The tools

are often referred to as foundational services because they are vital to the ability of the

SMF to perform its management functions, even though they are largely hidden from the

user community. The SMF must be capable of:

• Undertaking any transformation, orchestration, coordination, and security

actions necessary for the effective exchange of the message.

• Maintaining a loosely coupled environment in which neither the service

requesters nor the service providers need to communicate directly with each

other; - or even have knowledge of each other.

A SMF may accomplish some of its functions through an Enterprise Service Bus (ESB),

or it may be implemented entirely as an ESB.

Enterprise Service Bus (ESB): The concept of an Enterprise Service Bus (ESB) greatly

facilitates a SOA implementation by providing specifications for the coherent

management of services. The ESB provides the communication bridge that manages the

exchange of messages among services, although the services do not necessarily know

anything about each other. According to Erl (2005) ESB specifications typically define

the following kinds of message management capabilities:

4
 OASIS is an international organization that produces standards. It was formed in 1993 under the name of

SGML Open and changed its name to OASIS in 1998 in response to the changing focus from SGML (Standard

Generalized Markup Language) to XML (Extensible Markup Language) related standards.

Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 6

• Routing: The ability to channel a service request to a particular service provider

based on some routing criteria (e.g., static or deterministic, content-based,

policy-based, rule-based).

• Protocol Transformation: The ability to seamlessly transform the sender’s

message protocol to the receiver’s message protocol.

• Message Transformation: The ability to convert the structure and format of a

message to match the requirements of the receiver.

• Message Enhancement: The ability to modify or add to a sender’s message to

match the content expectations of the receiver.

• Service Mapping: The ability to translate a logical business service request into

the corresponding physical implementation by providing the location and

binding information of the service provider.

• Message Processing: The ability to accept a service request and ensure delivery

of either the message of a service provider or an error message back to the

sender. Requires a queuing capability to prevent the loss of messages.

• Process Choreography and Orchestration: The ability to manage multiple

services to coordinate a single business service request (i.e., choreograph),

including the implementation (i.e., orchestrate). An ESB may utilize a Business

Process Execution Language (BPEL) to facilitate the choreographing.

• Transaction Management: The ability to manage a service request that involves

multiple service providers, so that each service provider can process its portion

of the request without regard to the other parts of the request.

• Access Control and Security: The ability to provide some level of access

control to protect enterprise services from unauthorized messages.

There are quite a number of commercial off-the-shelf (COTS) ESB implementations that

satisfy these specifications to varying degrees A full ESB implementation would include

four distinct components (Figure 2): Mediator; Service Registry; Choreographer; and,

Rules Engine. The Mediator serves as the entry point for all messages and has by far the

largest number of message management responsibilities. It is responsible for routing,

communication, message transformation, message enhancement, protocol transformation,

message processing, error handling, service orchestration, transaction management, and

access control (security).

The Service Registry provides the service mapping information (i.e., the location and

binding of each service) to the Mediator. The Choreographer is responsible for the

coordination of complex business processes that require the participation of multiple

service providers. In some ESB implementations the Choreographer may also serve as an

entry point to the ESB. In that case it assumes the additional responsibilities of message

processing, transaction management, and access control (security). The Rules Engine

provides the logic that is required for the routing, transformation and enhancement of

messages. Clearly, the presence of such an engine in combination with an inferencing

capability provides a great deal of scope for adding higher levels of intelligence to an

ESB implementation.

Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 7

Figure 2: Primary ESB components

Typical Service Requester and Service Provider Scenario

The following sequence of conceptual steps that must be taken by the SMF to support a SOA

system environment is not inclusive of every variance that might occur. It is intended to provide

a brief description of the principal interactions involved (Figure 3).

While the Service Requester knows that the Mediator is the entry point of the ESB component of

the SMF and what bindings (i.e., protocols) are supported by the Mediator, it does not know

which Service Provider will satisfy the request because it knows nothing about any of the other

enterprise services that are accessible through the Mediator. Therefore, the conceptual SOA-

based infrastructure shown in Figure 1 is often referred to as a Cloud.

The Mediator is clearly in control and calls upon the other primary components of the ESB if and

when it requires their services. It requests the handle (i.e., location and mappings) of the

potential Service Providers from the Service Registry. If there are multiple Service Provider

candidates then it will have to select one of these in Step (6) to provide the requested service.

The Mediator will invoke any of the foundational services in the SMF to validate (i.e., access

control), translate, transform, enhance, and route the message to the selected Service Provider.

The latter is able to accept the message because it is now in a data exchange format that the

Service Provider supports.

Similar transformation and mapping actions are taken by the Mediator after it receives the reply

message from the Service Provider, so that it complies with the data exchange format supported

by the Service Requester. On receiving the response message the Service Requester does not

know which service responded to the request, nor did it have to deal with any of the data

exchange requirements of the Service Provider.

Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 8

Figure 3: Conceptual Cloud operations

Business Process Management (BPM)

From a general point of view, Business Process management (BPM) is the orchestration of

activities between people and systems. More specifically, BPM is a method for actively defining,

executing, monitoring, analyzing, and subsequently refining manual or automated business

processes. In other words, a business process is essentially a sequence of related, structured

activities (i.e., a workflow) that is intended to achieve an objective. Such workflows can include

interactions between human users, software applications or services, or a combination of both.

In a SOA-based information management environment this orchestration is most commonly

performed by the Choreographer component of the ESB (Figure 2). Based on SOA principles, a

sound BPM design will decompose a complex business process into smaller, more manageable

elements that comply with common standards and reuse existing solutions.

The BPM design solution should be based on an analysis of the problem within both its local and

global contexts (Figure 4). It must describe and support the local business process requirements

Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 9

as its primary objective and yet seamlessly integrate this micro perspective into a global view.

Successful integration of these two perspectives will require an understanding of external

interactions and the compliance parameters that apply to interprocess protocols. The principal

components of a BPM design solution include a Business Process Execution Language (BPEL)

engine, a graphical modeling tool, business user and system administration interfaces, internal

and external system interactions, and persistence (Figure 5).

 Figure 4: BPM design requirements Figure 5: BPM design components

BPEL Engine: BPEL, which is the preferred process language, is normally XML-based
5

and event driven. The BPEL Engine is responsible for detecting events, executing the

appropriate next step in the business process sequence, and managing outbound message

calls.

Graphical Editor: Effective communication during design is greatly facilitated by a

standard system of notation that is known to all parties involved in the design process,

and a graphical tool that allows design solutions to be represented in the form of

diagrams. Both the Business Process Modeling Notation (BPMN)
6
 and the Unified

Modeling Language (UML)
7
 Activity Diagram provide the necessary capabilities.

However, BPMN is normally preferred because it incorporates BPEL mapping

capabilities and is considered to be the more expressive notation. Whichever graphical

modeling tool is chosen it should be capable of representing the different views of the

process that are desired by the business user and the technical user. The business user is

interested in the overall flow of the process, while the technical user is interested in the

more detailed behavioral characteristics of each step.

5
 The Extensible Markup Language (XML) is a general purpose specification that allows the content of a

document to be defined separately from the formatting of the document.

6
 BPMN provides a graphical representation for describing a business process in the form of a workflow diagram.

It was developed by the Business Process Management Initiative (BPMI) and is now maintained by the Object

Management Group following the merging of these two organizations in 2005.

7
 The Unified Modeling Language (UML) provides a standard notation for modeling systems and context based

on object-oriented concepts and principles (Booch G., J. Rumbaugh and I. Jacobson (1999); ‘The Unified

Modeling Language User Guide’; Addison-Wesley, New York, New York.)

Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 10

User-interfaces: Typically, separate user-interfaces are required for the business user

who has a functional role in the business process and may from time to time be required

to interact with the BPEL Engine, and the system administrator who may be monitoring

the task flow for reactive or proactive system maintenance reasons. The business users

essentially require a worklist
8
 interface that allows them to contribute manual tasks to the

automated BPM process. This should be a user-friendly, role-based interface with process

status reports and error correction capabilities. The system administrators require a user-

interface that allows them to perform a host of management tasks including: defining a

process (i.e., find, activate, deactivate, remove, or add); controlling the execution of

processes known to the BPEL Engine and worklist tasks or activities (i.e., find, suspend,

resume, or terminate); managing user roles (i.e., add, modify, or remove users and roles

from applications); and, configuring application connections.

Both the business and system administration user-interfaces must incorporate security

measures to prevent unauthorized access and ensure that only authorized role-based

actions can be executed.

System interactions: A business process is likely to involve both internal and external

system interactions. In general terms these interactions may be characterized as four

distinct modes: process receives a message from another system; process receives a

message and sends a response; process sends a message to another system; and, process

sends a message and waits for a response. External interactions are typically

choreographed as web services, with a wide variety of system interfaces being supported

through a generic adapter facility. This means that the BPEL Engine must include a web

services listener capable of accepting an inbound message (e.g., in SOAP
9
 format), insert

it into the runtime engine, obtain a response (if any), and send out the response as a

SOAP message. Internal interactions are typically either client-server interfaces to other

systems executing on the enterprise network or inline code snippets.

Persistence: To survive the inevitable need to restart the BPEL Engine the current

process state must be stored in a database. Tables in the database typically include:

process definition; process execution state; message content and identification code;

process variables; activity execution state; and, worklist task execution state.

While BPM and SOA concepts are closely connected, they are certainly not synonymous.

Described more precisely, a SOA-based system environment provides the enabling infrastructure

for BPM by separating the functional execution of the business process from its technical

implementation.

In Conclusion: Cloud Computing

The concept of Cloud computing as a massively scalable, user-transparent computing resource

that can be readily accessed by multiple users across a global network is indeed a compellingly

8
 A BPM worklist allows a manual task to be assigned to a user and track the progress of that task. In this way the

human user can be the source of events that trigger the BPEL Engine.

9
 The Simple Object Access Protocol (SOAP) is a protocol specification for the exchange of data among web

services. It utilizes XML as its message format and depends on other protocols, such as Remote Procedure Call

(RPC) and Hypertext Transfer Protocol (HTTP) for transmitting the message.

Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 11

attractive proposition. Combined with the SOA design and implementation principles described

above, the Cloud not only takes care of all of the intricate technical interoperability and data

exchange incompatibility issues that have plagued computer users in the past, but also provides

essentially ubiquitous access to powerful and seamlessly integrated computer-based capabilities

as services. Naturally, multiple Clouds can be linked in a manner that is quite similar to the way

services are registered within a particular Cloud. In such an environment neither the service

requester nor the service provider needs to know, or even care, where the request originated and

where it was processed, even if the request for services had to traverse several Clouds before the

necessary service provider could be found.

It is of interest to note that this view of computing as a service is not new. During the 1960s and

1970s time-share computer systems, which linked multiple remote user terminals through

modems to a central computing facility, provided a similar computing service. However, there

were some major differences. First, access and data exchange was strictly confined to a single

computer center and in most cases to the particular application that the user was authorized to

use. Second, very little of the underlying computing environment was transparent to the user.

Third, the users were almost as rigidly tied to their access terminal location as the service

provider was tied to the location of its computer center. The time-share concept became obsolete

as soon as the advent of microcomputers brought the computing power to the user.

We might ask: Was it a desire by the computer users to have complete control over their

computing resources or convenience that led to the preference of ownership over service? While

Cloud computing promises to overcome the inconvenience, immobility, and lack of

interoperability constraints of the time-share service environment, it does pose other problems

that will need to be overcome. Chief among these is the issue of data security. Will organizations

be willing to entrust their proprietary data to a remote Cloud environment over which, in reality,

they have little control? They must trust the Cloud service provider to not only maintain

adequate internal security, but to resist even the most sophisticated and continuously changing

external intrusion attempts. Also, as Robert Lucky (2009) recently wrote “… once all your

petabytes of data are out there in the Cloud, can you ever get them back?

Finally, there is the question of user autonomy and control. Are current and will future privacy

laws be sufficient to protect the user from a plethora of potential consumer abuses, for example,

the automated collection of data about a user’s activities in the Cloud without the need to

actually trespass the data repositories themselves. Such data are already being collected by

Internet service providers and utilized to determine collective and individual preferences for

advertising and directed marketing purposes. Perhaps users will not be greatly concerned about

the potential privacy infringements of such activities, and in the end the convenience and

inexpensiveness of Cloud computing may become the deciding factors.

References

Burlton R. (2001); ‘Business Process Management: Profiling from Process’; SAMS,

Indianapolis, Indiana.

Chang J. (2005); ‘Business Process Management Systems’; Auerbach Publications,

Auerbach/Vogtland, Germany.

Plenary Session Keynote Paper: InterSymp-2009, Baden-Baden, Germany, 3-7 August, 2009 [RESU98]

 12

Erl T. (2005); ‘Service-Oriented Architecture (SOA): Concepts, Technology, and Design’;

Prentice Hall Service-Oriented Computing Series, Prentice Hall, Englewood Cliffs, New Jersey.

Havey M. (2005); ‘Essential Business Process Modeling’; O’Reilly, Sebastopol, California.

Jeston J. and J. Nelis (2006); ‘Business Process Management: Practical Guidelines to Successful

Implementations’; Butterworth Hein Elsevier, United Kingdom.

Lucky R. (2009); ‘Cloud Computing’; (under Reflections) IEEE Spectrum, Institute of Electrical

and Electronics Engineers, 46(5), May (pp. 27).

Pohl J. (2005); ‘Intelligent Software Systems in Historical Context’; in Jain L. and G. Wren

(eds.); 'Decision Support Systems in Agent-Based Intelligent Environments'; Knowledge-Based

Intelligent Engineering Systems Series, Advanced Knowledge International (AKI), Sydney,

Australia.

Pohl J. (2007); ‘Knowledge Management Enterprise Services (KMES): Concepts and

Implementation Principles’; InterSymp-2007, Proceedings Focus Symposium on Representation

of Context in Software, Baden-Baden July 31, Germany.

Taylor D. and H. Assal (2008); ‘Using BPM as an Interoperability Platform’; C2 Journal, Special

Issue on Modeling and Simulation, CCRP, Washington, DC, Fall.

