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Abstract 

This paper draws attention to the increasing need for agile and adaptive software environments 

that are capable of supporting rapid re-planning during the execution of time-critical operations 

involving commercial end-to-end supply chain transaction sequences, as well as disaster 

response and military missions. It is argued that such environments are currently best served by 

information-centric software tools executing within a service-oriented paradigm. Service-

oriented architecture (SOA) design concepts and principles are described, with a focus on the 

functions of the services management framework (SMF) and enterprise service bus (ESB) 

components. Differentiating between data-centric and information-centric services, it is 

suggested that only intelligent software services, particularly those that incorporate an internal 

representation of context in the form of an ontology and agents with reasoning capabilities, are 

able to effectively address the need for agile and adaptive planning, re-planning and decision-

support tools.  

The paper concludes with a description of the design components of a business process 

management (BPM) system operating within a SOA-based infrastructure, followed by a brief 

discussion of Cloud computing promises and potential user concerns.  
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Need for Adaptive Planning Tools 

There is an increasing need in industry and government for planners and decision-makers to be 

able to rapidly re-plan during execution. Experience has shown that the best-laid plans will likely 

have to be changed during implementation. Operational environments are often impacted by 

events or combinations of factors that were either not foreseen during the planning stage or were 

thought to be unlikely to occur. In commerce, where just in time inventories have become an 

acknowledged cost-saving measure, suppliers and shippers are particularly vulnerable to the 

disruption of end-to-end supply chain sequences, such as inclement weather conditions, traffic 

congestion, accidents, equipment malfunction, and human error.  

Military commanders, who often deal with extremely time-critical and human life endangering 

operations have learned from bitter experience that agile planning tools are essential for their 

ability to rapidly adapt to changing mission conditions. It can be argued that an information 
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management environment, with an agile planning capability of the type implied by the stated 

objectives of the Adaptive Planning and Execution (APEX)
1
 process recently adopted by the U.S. 

military forces, requires both the ability to automatically interpret data in context and the 

flexibility to provide access to decision-support tools regardless of whether these are part of the 

same software application or another application.  

This argument is based on the definition of agility as the ability to rapidly adapt to changing 

conditions, and has two implications. First, in a real world environment the operational data that 

enter a particular application may not adhere exactly to the specifications on which the design of 

the software was originally based. An agile software application will therefore need to have the 

ability to automatically interpret the incoming data within the appropriate context and make the 

necessary processing adjustments. Second, under such dynamic conditions it is likely that the 

user will have a need for tools that were not foreseen during the design of the application and are 

therefore not available. An agile software environment will therefore have to provide access to a 

wide range of tools, at least some of which may not be an integral component of the particular 

application that the operator is currently using. This suggests a system environment in which 

software tools can be seamlessly accessed across normal application domain boundaries. This is 

the objective of an information management environment that is based on the service-oriented 

concepts and principles described in this paper. 

 

Information-Centric vs. Data-Centric 

There are several reasons why computer software must increasingly incorporate more and more 

intelligent capabilities (Pohl 2005). Perhaps the most compelling of these reasons relates to the 

current data-processing bottleneck. Advancements in computer technology over the past several 

decades have made it possible to store vast amounts of data in electronic form. Based on past 

manual information handling practices and implicit acceptance of the principle that the 

interpretation of data into information and knowledge is the responsibility of the human 

operators of the computer-based data storage devices, emphasis was placed on storage efficiency 

rather than processing effectiveness. Typically, data file and database management 

methodologies focused on the storage, retrieval and manipulation of data transactions
2
, rather 

than the context within which the collected data would later become useful in planning, 

monitoring, assessment, and decision-making tasks. 

The term information-centric refers to the representation of information, as it is available to 

software modules, not to the way it is actually stored in a digital machine.  This distinction 

                                                 
1
  Adaptive Planning and Execution Roadmap II, AO Review (Draft), Joint Chiefs of Staff, 8 February 2007.  

2
  Most large organizations, including the Military, are currently forced to dedicate a significant portion of their 

operating budget, staff, project budgets, and time, on the piecemeal resolution of ad hoc problems and obstacles 

that are symptoms of an overloaded data-centric environment. Examples include: data bottlenecks and 

transmission delays resulting in aged data; temporary breakdown of data exchange interfaces; inability to 

quickly find critical data within a large distributed network of data-processing nodes; inability to interpret and 

analyze data within time constraints; and, determining the accuracy of the data that are readily available. This 

places the organization in a reactive mode, and forces it to expend many of its resources on solving the 

symptoms rather than the core problem. In contrast, an information-centric environment is capable of 

supporting: (1) the automatic filtering of data by placing data into an information context; (2) the automated 

reasoning of software agents as they monitor events and assist human planners and problem solvers in an 

intelligent collaborative decision-making environment; and, (3) autonomic computing capabilities. 
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between representation and storage is important, and relevant far beyond the realm of 

computers.  When we write a note with a pencil on a sheet of paper, the content (i.e., meaning) of 

the note is unrelated to the storage device.  A sheet of paper is designed to be a very efficient 

storage medium that can be easily stacked in sets of hundreds, filed in folders, folded, bound into 

volumes, and so on.  As such, representation can exist at varying levels of abstraction. The 

lowest level of representation considered is wrapped data. Wrapped data consists of low-level 

data, for example a textual e-mail message that is placed inside some sort of an e-mail message 

object. While it could be argued that the e-mail message is thereby objectified it is clear that the 

only objectification resides in the shell that contains the data and not the e-mail content. The 

message is still in a data-centric form offering a limited opportunity for interpretation by 

software components. 

A higher level of representation endeavors to describe aspects of a domain as collections of inter-

related, constrained objects. This level of representation is commonly referred to as an 

information-centric ontology. At this level of representation context can begin to be captured and 

represented in a manner supportive of software-based reasoning. This level of representation 

(i.e., context) is an empowering design principle that allows software to undertake the 

interpretation of operational data changes within the context provided by the internal information 

model (i.e., ontology). 

Even before the advent of the Internet and the widespread promulgation of SOA concepts it was 

considered good software design and engineering practice to build distributed software systems 

of loosely coupled modules that are able to collaborate by subscription to a shared information 

model. The principles and corresponding capabilities that enable these software modules to 

function as decoupled services include (Pohl 2007):  

• An internal information model that provides a usable representation of the 

application domain in which the service is being offered. In other words, the 

context provided by the internal information model must be adequate for the 

software application (i.e., service) to perform as a useful adaptive set of tools in 

its area of expertise.  

• The ability to reason about events within the context provided by the internal 

information model. These reasoning capabilities may extend beyond the ability to 

render application domain related services to the performance of self-monitoring 

maintenance and related operational efficiency tasks.  

• Facilities that allow the service to subscribe to other internal services and 

understand the nature and capabilities of these resources based on its internal 

information model
3
.  

• The ability of a service to understand the notion of intent (i.e., goals and 

objectives) and undertake self-activated tasks to satisfy its intent. Within the 

current state-of-the-art this capability is largely limited by the degree of context 

that is provided by the internal information model. 

                                                 
3
  This must be considered a minimum system capability. The full implementation of a web services environment 

should include facilities that allow a service to discover other external services and understand the nature and 

capabilities of these external services. 
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Additional capabilities that are not yet able to be realized in production systems due to technical 

limitations, but have been demonstrated in the laboratory environment, include: the ability of a 

service to learn through the acquisition and merging of information fragments obtained from 

external sources with its own internal information model (i.e., dynamically extensible 

information models); extension of the internal information model to include the internal 

operational domain of the software application itself and the role of the service within the 

external environment; and, the ability of a service to increase its capabilities by either generating 

new tools (e.g., creating new agents or cloning existing agents) or automatically searching for 

external assistance. 

 

Service-Oriented Architecture (SOA) 

The notion of service-oriented is ubiquitous. Everywhere we see countless examples of tasks 

being performed by a combination of services, which are able to interoperate in a manner that 

results in the achievement of a desired objective. Typically, each of these services is not only 

reusable but also sufficiently decoupled from the final objective to be useful for the performance 

of several somewhat similar tasks that may lead to quite different results. For example, a 

common knife can be used in the kitchen for preparing vegetables, or for peeling an orange, or 

for physical combat, or as a makeshift screwdriver. In each case the service provided by the knife 

is only one of the services that are required to complete the task. Clearly, the ability to design 

and implement a complex process through the application of many specialized services in a 

particular sequence has been responsible for most of mankind’s achievements in the physical 

world. The key to the success of this approach is the interface, which allows each service to be 

utilized in a manner that ensures that the end-product of one service becomes the starting point of 

another service.  

 

Figure 1:  Principal components of a conceptual SOA implementation 
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In the software domain these same concepts have gradually led to the adoption of Service-

Oriented Architecture (SOA) principles. While SOA is by no means a new concept in the 

software industry it was not until Web services became available that these concepts could be 

readily implemented (Erl 2005). In the broadest sense SOA is a software framework for 

computational resources to provide services to customers, such as other services or users. The 

Organization for the Advancement of Structured Information (OASIS)
4
 defines SOA as a “… 

paradigm for organizing and utilizing distributed capabilities that may be under the control of 

different ownership domains” and “…provides a uniform means to offer, discover, interact with 

and use capabilities to produce desired effects with measurable preconditions and expectations”. 

This definition underscores the fundamental intent that is embodied in the SOA paradigm, 

namely flexibility. To be as flexible as possible a SOA environment is highly modular, platform 

independent, compliant with standards, and incorporates mechanisms for identifying, 

categorizing, provisioning, delivering, and monitoring services. 

The principal components of a conceptual SOA implementation scheme (Figure 1) include a 

Services Management Framework (SMF), various kinds of foundational services that allow the 

SMF to perform its management functions, one or more portals to external clients, and the 

enterprise services that facilitate the ability of the user community to perform its operational 

tasks. 

Services Management Framework (SMF):  A Services Management Framework (SMF) 

is essentially a SOA-based software infrastructure that utilizes tools to manage the 

exchange of messages among enterprise services. The messages may contain requests for 

services, data, the results of services performed, or any combination of these. The tools 

are often referred to as foundational services because they are vital to the ability of the 

SMF to perform its management functions, even though they are largely hidden from the 

user community. The SMF must be capable of: 

• Undertaking any transformation, orchestration, coordination, and security 

actions necessary for the effective exchange of the message. 

• Maintaining a loosely coupled environment in which neither the service 

requesters nor the service providers need to communicate directly with each 

other; - or even have knowledge of each other. 

A SMF may accomplish some of its functions through an Enterprise Service Bus (ESB), 

or it may be implemented entirely as an ESB. 

Enterprise Service Bus (ESB):  The concept of an Enterprise Service Bus (ESB) greatly 

facilitates a SOA implementation by providing specifications for the coherent 

management of services. The ESB provides the communication bridge that manages the 

exchange of messages among services, although the services do not necessarily know 

anything about each other. According to Erl (2005) ESB specifications typically define 

the following kinds of message management capabilities: 

                                                 
4
  OASIS is an international organization that produces standards. It was formed in 1993 under the name of 

SGML Open and changed its name to OASIS in 1998 in response to the changing focus from SGML (Standard 

Generalized Markup Language) to XML (Extensible Markup Language) related standards.   
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• Routing:  The ability to channel a service request to a particular service provider 

based on some routing criteria (e.g., static or deterministic, content-based, 

policy-based, rule-based). 

• Protocol Transformation:  The ability to seamlessly transform the sender’s 

message protocol to the receiver’s message protocol. 

• Message Transformation:  The ability to convert the structure and format of a 

message to match the requirements of the receiver. 

• Message Enhancement:  The ability to modify or add to a sender’s message to 

match the content expectations of the receiver. 

• Service Mapping:  The ability to translate a logical business service request into 

the corresponding physical implementation by providing the location and 

binding information of the service provider. 

• Message Processing:  The ability to accept a service request and ensure delivery 

of either the message of a service provider or an error message back to the 

sender. Requires a queuing capability to prevent the loss of messages. 

• Process Choreography and Orchestration:  The ability to manage multiple 

services to coordinate a single business service request (i.e., choreograph), 

including the implementation (i.e., orchestrate). An ESB may utilize a Business 

Process Execution Language (BPEL) to facilitate the choreographing.  

• Transaction Management:  The ability to manage a service request that involves 

multiple service providers, so that each service provider can process its portion 

of the request without regard to the other parts of the request. 

• Access Control and Security:  The ability to provide some level of access 

control to protect enterprise services from unauthorized messages. 

There are quite a number of commercial off-the-shelf (COTS) ESB implementations that 

satisfy these specifications to varying degrees A full ESB implementation would include 

four distinct components (Figure 2): Mediator; Service Registry; Choreographer; and, 

Rules Engine. The Mediator serves as the entry point for all messages and has by far the 

largest number of message management responsibilities. It is responsible for routing, 

communication, message transformation, message enhancement, protocol transformation, 

message processing, error handling, service orchestration, transaction management, and 

access control (security).  

The Service Registry provides the service mapping information (i.e., the location and 

binding of each service) to the Mediator. The Choreographer is responsible for the 

coordination of complex business processes that require the participation of multiple 

service providers. In some ESB implementations the Choreographer may also serve as an 

entry point to the ESB. In that case it assumes the additional responsibilities of message 

processing, transaction management, and access control (security). The Rules Engine 

provides the logic that is required for the routing, transformation and enhancement of 

messages. Clearly, the presence of such an engine in combination with an inferencing 

capability provides a great deal of scope for adding higher levels of intelligence to an 

ESB implementation.  
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Figure 2:  Primary ESB components 

 

Typical Service Requester and Service Provider Scenario 

The following sequence of conceptual steps that must be taken by the SMF to support a SOA 

system environment is not inclusive of every variance that might occur. It is intended to provide 

a brief description of the principal interactions involved (Figure 3). 

While the Service Requester knows that the Mediator is the entry point of the ESB component of 

the SMF and what bindings (i.e., protocols) are supported by the Mediator, it does not know 

which Service Provider will satisfy the request because it knows nothing about any of the other 

enterprise services that are accessible through the Mediator. Therefore, the conceptual SOA-

based infrastructure shown in Figure 1 is often referred to as a Cloud. 

The Mediator is clearly in control and calls upon the other primary components of the ESB if and 

when it requires their services. It requests the handle (i.e., location and mappings) of the 

potential Service Providers from the Service Registry. If there are multiple Service Provider 

candidates then it will have to select one of these in Step (6) to provide the requested service. 

The Mediator will invoke any of the foundational services in the SMF to validate (i.e., access 

control), translate, transform, enhance, and route the message to the selected Service Provider. 

The latter is able to accept the message because it is now in a data exchange format that the 

Service Provider supports.  

Similar transformation and mapping actions are taken by the Mediator after it receives the reply 

message from the Service Provider, so that it complies with the data exchange format supported 

by the Service Requester. On receiving the response message the Service Requester does not 

know which service responded to the request, nor did it have to deal with any of the data 

exchange requirements of the Service Provider. 
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Figure 3:  Conceptual Cloud operations 

 

Business Process Management (BPM) 

From a general point of view, Business Process management (BPM) is the orchestration of 

activities between people and systems. More specifically, BPM is a method for actively defining, 

executing, monitoring, analyzing, and subsequently refining manual or automated business 

processes. In other words, a business process is essentially a sequence of related, structured 

activities (i.e., a workflow) that is intended to achieve an objective. Such workflows can include 

interactions between human users, software applications or services, or a combination of both.   

In a SOA-based information management environment this orchestration is most commonly 

performed by the Choreographer component of the ESB (Figure 2). Based on SOA principles, a 

sound BPM design will decompose a complex business process into smaller, more manageable 

elements that comply with common standards and reuse existing solutions. 

The BPM design solution should be based on an analysis of the problem within both its local and 

global contexts (Figure 4). It must describe and support the local business process requirements 
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as its primary objective and yet seamlessly integrate this micro perspective into a global view. 

Successful integration of these two perspectives will require an understanding of external 

interactions and the compliance parameters that apply to interprocess protocols. The principal 

components of a BPM design solution include a Business Process Execution Language (BPEL) 

engine, a graphical modeling tool, business user and system administration interfaces, internal 

and external system interactions, and persistence (Figure 5).  

   

           Figure 4:  BPM design requirements                Figure 5:  BPM design components 

BPEL Engine:  BPEL, which is the preferred process language, is normally XML-based
5
 

and event driven. The BPEL Engine is responsible for detecting events, executing the 

appropriate next step in the business process sequence, and managing outbound message 

calls.  

Graphical Editor:  Effective communication during design is greatly facilitated by a 

standard system of notation that is known to all parties involved in the design process, 

and a graphical tool that allows design solutions to be represented in the form of 

diagrams. Both the Business Process Modeling Notation (BPMN)
6
 and the Unified 

Modeling Language (UML)
7
 Activity Diagram provide the necessary capabilities. 

However, BPMN is normally preferred because it incorporates BPEL mapping 

capabilities and is considered to be the more expressive notation. Whichever graphical 

modeling tool is chosen it should be capable of representing the different views of the 

process that are desired by the business user and the technical user. The business user is 

interested in the overall flow of the process, while the technical user is interested in the 

more detailed behavioral characteristics of each step. 

                                                 
5
 The Extensible Markup Language (XML) is a general purpose specification that allows the content of a 

document to be defined separately from the formatting of the document.   

6
  BPMN provides a graphical representation for describing a business process in the form of a workflow diagram. 

It was developed by the Business Process Management Initiative (BPMI) and is now maintained by the Object 

Management Group following the merging of these two organizations in 2005. 

7
 The Unified Modeling Language (UML) provides a standard notation for modeling systems and context based 

on object-oriented concepts and principles (Booch G., J. Rumbaugh and I. Jacobson (1999); ‘The Unified 

Modeling Language User Guide’; Addison-Wesley, New York, New York.)  
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User-interfaces:  Typically, separate user-interfaces are required for the business user 

who has a functional role in the business process and may from time to time be required 

to interact with the BPEL Engine, and the system administrator who may be monitoring 

the task flow for reactive or proactive system maintenance reasons. The business users 

essentially require a worklist
8
 interface that allows them to contribute manual tasks to the 

automated BPM process. This should be a user-friendly, role-based interface with process 

status reports and error correction capabilities. The system administrators require a user-

interface that allows them to perform a host of management tasks including: defining a 

process (i.e., find, activate, deactivate, remove, or add); controlling the execution of 

processes known to the BPEL Engine and worklist tasks or activities (i.e., find, suspend, 

resume, or terminate); managing user roles (i.e., add, modify, or remove users and roles 

from applications); and, configuring application connections.   

Both the business and system administration user-interfaces must incorporate security 

measures to prevent unauthorized access and ensure that only authorized role-based 

actions can be executed. 

System interactions:  A business process is likely to involve both internal and external 

system interactions. In general terms these interactions may be characterized as four 

distinct modes: process receives a message from another system; process receives a 

message and sends a response; process sends a message to another system; and, process 

sends a message and waits for a response. External interactions are typically 

choreographed as web services, with a wide variety of system interfaces being supported 

through a generic adapter facility. This means that the BPEL Engine must include a web 

services listener capable of accepting an inbound message (e.g., in SOAP
9
 format), insert 

it into the runtime engine, obtain a response (if any), and send out the response as a 

SOAP message. Internal interactions are typically either client-server interfaces to other 

systems executing on the enterprise network or inline code snippets. 

Persistence:  To survive the inevitable need to restart the BPEL Engine the current 

process state must be stored in a database. Tables in the database typically include: 

process definition; process execution state; message content and identification code; 

process variables; activity execution state; and, worklist task execution state.  

While BPM and SOA concepts are closely connected, they are certainly not synonymous. 

Described more precisely, a SOA-based system environment provides the enabling infrastructure 

for BPM by separating the functional execution of the business process from its technical 

implementation.  

 

In Conclusion: Cloud Computing 

The concept of Cloud computing as a massively scalable, user-transparent computing resource 

that can be readily accessed by multiple users across a global network is indeed a compellingly 

                                                 
8
  A BPM worklist allows a manual task to be assigned to a user and track the progress of that task. In this way the 

human user can be the source of events that trigger the BPEL Engine. 

9
 The Simple Object Access Protocol (SOAP) is a protocol specification for the exchange of data among web 

services. It utilizes XML as its message format and depends on other protocols, such as Remote Procedure Call 

(RPC) and Hypertext Transfer Protocol (HTTP) for transmitting the message. 
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attractive proposition. Combined with the SOA design and implementation principles described 

above, the Cloud not only takes care of all of the intricate technical interoperability and data 

exchange incompatibility issues that have plagued computer users in the past, but also provides 

essentially ubiquitous access to powerful and seamlessly integrated computer-based capabilities 

as services. Naturally, multiple Clouds can be linked in a manner that is quite similar to the way 

services are registered within a particular Cloud. In such an environment neither the service 

requester nor the service provider needs to know, or even care, where the request originated and 

where it was processed, even if the request for services had to traverse several Clouds before the 

necessary service provider could be found. 

It is of interest to note that this view of computing as a service is not new. During the 1960s and 

1970s time-share computer systems, which linked multiple remote user terminals through 

modems to a central computing facility, provided a similar computing service. However, there 

were some major differences. First, access and data exchange was strictly confined to a single 

computer center and in most cases to the particular application that the user was authorized to 

use. Second, very little of the underlying computing environment was transparent to the user. 

Third, the users were almost as rigidly tied to their access terminal location as the service 

provider was tied to the location of its computer center. The time-share concept became obsolete 

as soon as the advent of microcomputers brought the computing power to the user.  

We might ask: Was it a desire by the computer users to have complete control over their 

computing resources or convenience that led to the preference of ownership over service? While 

Cloud computing promises to overcome the inconvenience, immobility, and lack of 

interoperability constraints of the time-share service environment, it does pose other problems 

that will need to be overcome. Chief among these is the issue of data security. Will organizations 

be willing to entrust their proprietary data to a remote Cloud environment over which, in reality, 

they have little control? They must trust the Cloud service provider to not only maintain 

adequate internal security, but to resist even the most sophisticated and continuously changing 

external intrusion attempts. Also, as Robert Lucky (2009) recently wrote “… once all your 

petabytes of data are out there in the Cloud, can you ever get them back? 

Finally, there is the question of user autonomy and control. Are current and will future privacy 

laws be sufficient to protect the user from a plethora of potential consumer abuses, for example, 

the automated collection of data about a user’s activities in the Cloud without the need to 

actually trespass the data repositories themselves. Such data are already being collected by 

Internet service providers and utilized to determine collective and individual preferences for 

advertising and directed marketing purposes. Perhaps users will not be greatly concerned about 

the potential privacy infringements of such activities, and in the end the convenience and 

inexpensiveness of Cloud computing may become the deciding factors.      
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