
 Service-Oriented Architecture (SOA)
The notion of service-oriented is ubiquitous. Everywhere we see countless examples of tasks being
performed by a combination of services, which are able to interoperate in a manner that results in the
achievement of a desired objective. Typically, each of these services is not only reusable but also sufficiently
decoupled from the final objective to be useful for the performance of several somewhat similar tasks that
may lead to quite different results. For example, a common knife can be used in the kitchen for preparing
vegetables, or for peeling an orange, or for physical combat, or as a makeshift screwdriver. In each case the
service provided by the knife is only one of the services that are required to complete the task. Clearly, the
ability to design and implement a complex process through the application of many specialized services in
a particular sequence has been responsible for most of mankind’s achievements in the physical world. The
key to the success of this approach is the interface, which allows each service to be utilized in a manner that
ensures that the end-product of one service becomes the starting point of another service.

In the software domain these same concepts have gradually led to the adoption of Service-Oriented
Architecture (SOA) principles. While SOA is by no means a new concept in the software industry it was not
until Web services became available that these concepts could be readily implemented. In the broadest
sense SOA is a software framework for computational resources to provide services to customers, such as
other services or users. The Organization for the Advancement of Structured Information (OASIS) defines
SOA as a “… paradigm for organizing and utilizing distributed capabilities that may be under the control of
different ownership domains” and “…provides a uniform means to offer, discover, interact with and use
capabilities to produce desired effects with measurable preconditions and expectations”. This definition
underscores the fundamental intent that is embodied in the SOA paradigm, namely flexibility. To be as
flexible as possible a SOA environment is highly modular, platform independent, compliant with standards,
and incorporates mechanisms for identifying, categorizing, provisioning, delivering, and monitoring services.

A core component of a SOA-based software system is an Enterprise Service Bus (ESB) that provides the
communication bridge through which the tasks performed by the services are coordinated. The management
functions provided by the ESB are critical to the successful operation of the system, because each individual
service is capable of performing only a narrow set of tasks, is unaware of the existence of any other services,
and has no understanding of or interest in the end-result produced by the system. Therefore, the ESB needs
to be able to route any request for services to a service that can perform the requested task, translate the
request into the form that the task provider expects the request to be in, and again translate the results of
the performed tasks into the form expected by the requester. For example, Service-A sends a request for
the current location of a particular item that has been ordered by a customer. The ESB receives the request,
translates it into one form that is expected by Service-B with responsibility for inventory and another form for
Service-C with responsibility for in-transit tracking of shipments. Similarly, the ESB will translate the responses
received by Service-B and Service-C into the required form for Service-A. In more technical terms ESB
management services include, routing, protocol transformation, message transformation, service mapping,
message processing, process orchestration, transaction management, and access control.

© CHOBU Group LLC • 872 Higuera Street, San Luis Obispo, CA 93401-3610

